844 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 38, NO. 7, JULY 2002

Theoretical Investigation of One-Dimensional
Cavities in Two-Dimensional Photonic Crystals

Stavroula Foteinopoulou and Costas M. Soukoulis

Abstract—We study numerically the features of the resonant applications incorporating a PC cavity have been suggested or
peak of one-dimensional (1-D) dielectric cavities in a two-dimen- reported [14]-[16], such as optical laser components [1]-[3],

sional (2-D) hexagonal lattice. We use both the transfer matrix ; : ; _ i ht_amitt ;
method and the finite difference time-domain (FDTD) method optical fllter_s [5]’. single-mode light-emitting diode [9], [17],
and optical imaging [18].

to calculate the transmission coefficient. We compare the two . .
methods and discuss their results for the transmission and quality N this paper, we focus on the theoretical study of an 1-D
factor @ of the resonant peak. We also examine the dependence ofdielectric cavity in between a hexagonal patterned region of

Q on absorption and losses, the thickness of the sample, and theajr cylinders in a dielectric matrix for the case Hf polariza-
lateral width of the cavity. The Q-factor dependence on the width o (magnetic field along the cylinder axis). We will present
of the source in the FDTD calculations is also given. - :
the cavity mode frequency versus the cavity length)((see
Index Terms—Cavity, photonic crystals, quality factor, reso- Fig. 1), as well as the quality factof)j of the modes versus
nance. their corresponding frequency. The quality factor is defined as
Ap/6A where), is the frequency of the resonant peak @id
l. INTRODUCTION is the width of the resonance at transmission half of its max-
imum value. In our case, the quality faci@rof the resonance
N .SE_MICOND_UCTOR crystals, the_: presence of th% relatively small £200), and o?herr?/]ethods of determining the
periodic potential affects the properties of the electron factor (such as from the energy decay of the resonance [19])

Likewise in photonic crystals (PCs) that are periodic dielectr fve similar results. The dependence of the resonant mode on the

arrangements in one, two, or three dimensions, the proper e of the system (in the lateral direction and in the direction

of the phoEon can be pontrolled. Eor certain_frequency regioH?propagation) will be also shown. In our calculations, two dif-
known as “the photonic bandgap,” propagation of electroma%—

. . L rent numerical techniques (the transfer matrix and the FDTD)
_net|c waves 1s prohlb |te_>d in the PC [1]_[4]' A defect presenle used and the results of the two methods are compared and
in an otherwise periodic crystal may introduce one or morg

. . ) - discussed. With both techniques, we calculate the transmission
propagation modes in the bandgap and forms a cavity. Cavi

t{ﬁ?ough the structure and from that we obtain all the relevant

of different geometries can exist in a PC and the resulting r&8% tures of the resonant mode

onant mode can be classified into two general types indicatingIn Section II, we describe briefly the two calculational

\t';/]hefgerl it td_rcipsi from tg]e ;ai;” (*‘Tigheff) F[)?nd or raises _fr?nl%ethods. In Section 1, we present and discuss our calcula-
e “dielectric” (lower) band [5]. The first type is associa e%gnal results concerning the quality factor and position of the

with defects corresponding to the removal of dielectric materig vity resonance. We also compare the latter with the values
while the second corresponds to defects involving the additi tained from thé experiment previously performed on the
of dielectric material. The features of the resonant mode w, ructure under study [20]. In Section IV, we give a summary

depend on both the bulk crystal and the cavity characteristi

and can so be tuned accordingly [1][3], [5]. 6Pour resuts.
An important virtue of the PC cavity is that it can control

the atomic spontaneous emission, while metallic cavities for

the related frequency range are generally lossy [6]-[8]. Spon-The first technique we use is the transfer matrix method

taneous emission is important for a number of semiconduc{dMM) developed by Pendry [21], [22]. In the TMM, a grid

devices [9]. Resonant cavities have undergone extensive studfice is used to discretize the space, and the structure is

[8], [10]-[13], both theoretical and experimental. A variety oflivided into finite blocks along the propagation direction.
With the use of Maxwell’'s equations, that are solved on the
grid lattice, the electric and magnetic field can be integrated
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Fig. 1. The cavity structure under study. The bulk crystals symmetry diredfidisandT" K are shown L. refers to the cavity width. For the actual crystal,
2b = v/3a, but in the TMM, due to necessary approximatiatis= 1.7a. L., is the lateral width of the cavity whilé.;, is the thickness of the cavity system.

The second method we use is the finite-difference time-dthre GaAs dieletric constant for1000 nm is assumed in the
main (FDTD) technique [19], [23]. The real space is discretizazhlculations for simplicity). The whole cavity structure is em-
on a grid lattice and Maxwell’s equations are solved in the timedded in GaAs(= 11.3). The symmetry directions of the bulk
domain. The electric and magnetic fields are updated in evamystal are also shown. With.., we will refer to the cavity width
point of the grid lattice in finite time steps. The structure is infithat corresponds to the length of the dielectric defect introduced
nite in the direction of the cylinders direction) but has finite along the propagation direction. With,,, we will refer to the
size in both ther andy directions and is embedded in a finitedateral width of the cavity (which is the same as the sample’s
sized (inz andy) dielectric slab with a dielectric constant equalateral width). N, will be the number of rows on each side of
to that of the matrix medium. Liao absorbing boundary condike cavity (V. = 4 for both calculations and experiment). The
tions [24] are applied at the walls of the slab to avoid reflectionthickness of the sample then along the propagation direction
The source is a pulse, located closeste= 0, y = 0 (y being would beL;;, = 2N.b+ L., where2b = v/3a (but is approxi-
the direction of propagation), has a finite length, and generatested withl.7a in the TMM for numerical reasons). (Such an
fields with a trapezoidal (extended with Gaussian tails) profil@proximation introduces an error of at most 3% in the posi-
in space. To calculate the transmission, a line detector is pladih of the resonance and does not affect the quality factor.) The
along the lateral direction after the structure. The componaatlius R of the air holes isi ~ 0.2803a (a being the lattice
that is perpendicular to the detector of the Poynting vector (foonstant) that corresponds to a filling factor-09.285. (Actu-
the Fourier transformed fields) is taken and averaged over théy in the TMM because of the approximation mentioned above
detector. This is normalized with the respective value for thhe simulated structure will have a slightly larger filling factor).
same detector but positioned close to the source in the abseNoespecific value for the lattice constanis assumed. All of the
of the structure (to avoid corrupting the data with reflectiondgjand gap and transmission properties in a PC scale with the lat-
and yields the transmission of the structure. tice constant, so all the subsequent results will be presented in

In both methods the quality factor is calculated from the trandimensionless units of frequency (reduced frequeneya/\)
mission versus frequency data froxp/6A where),, is the fre-  and length.
guency of the resonant peak afidis the width of the resonance  From the transfer matrix results for the variolls, we ob-
at transmission half of its maximum. served that the spectral gap when the cavity is introduced is

The two methods differ not only in the calculational approachider than the one for the periodic crystal. Such widening of
but also in the characteristics of the source of the incoming Ef¥ie gap was also observed in [13] when a defect is introduced by
waves, and in the lateral size of the sample that is simulatedmoval of two rows of sites in a periodic 2-D system of dielec-
We also performed calculations using the FDTD method but apic rods in air background. TMM calculations have been per-
plying Bloch (periodic) boundary conditions in the latera) ( formed for cavity structures with dimensionleks/a ranging
direction to have conditions similar to those for the transfer m&om ~0.15 to 2.0. At a certain frequency, different resonances
trix. The source that is used in the latter case is still a pulse fpeaks) can occur corresponding to differéptvalues. Each of
with a plane-wave front. these peaks is characterized by an order that basically indicates
the order at which a resonant peak appears at this specific fre-
quency whileL,. is increasing.

In Fig. 2, every cavity width (in units o&) is plotted as

In Fig. 1, the cross section of the cavity structure under studyfunction of the corresponding reduced frequency of the ob-
with the z—y plane can be seen. It corresponds to air cylindesgrved peak and three different curves are recovered for the
(o = 1.0) in a GaAs background:{ = 11.3) (the value of three orders of the resonant peaks. Starting from the lower to

Ill. RESULTS
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Fig. 2. Cavity width versus the reduced frequency of the correspondifgyg. 3. Comparison between transmission results obtained with the
observed cavity resonant peaks. The results are obtained with the TMWIM technique (solid line) and the FDTD (dotted line with circles), for
(solid dotted and dot-dashed line). The experimental results for various lattibe/« = 0.85. In order to make the comparison in this particular case, we
constantsz are shown for comparison. The stars, circles, squares, trianglgnsidered an approximate triangular struct(#é = 1.7a) in the FDTD
(left), andz are fora = 200, 210, 220, 230, and 240 nm, respectively. method too.

the higher curve in Fig. 2, the peaks are the first-, second-, amghulse emitted from a source with finite width is considered.
third-order, respectively. It will be seen later that peaks of th&so, the way the transmission coefficient is obtained is dif-
same frequency but different order can have different featufesent in the two methods. In the TMM, it is calculated from
(e.g., quality factor). It is evident from Fig. 2 that for certdin  the transfer matrix using the field values while in the FDTD itis
values more than one resonant peak can appear within the gaiculated from the energy ratio that passes through the crystal
The experimental results [20] for the resonant peaks for vaaong the propagation direction. In order to make the compar-
ious lattice constants:(= 200 nm, 210 nm, 220 nm, 230 nm,ison between the two methods in this particular FDTD calcula-
240 nm) are also included in the figure. The agreement is gdion, the 2-D space is discretized as in the transfer matrix which
erally good but there seems to be a small discrepancy that gives2b = 1.7a instead ofy/3a. The results for one particular
creases with the frequency. This can be attributed to the fact thavity width are shown in Fig. 3. Good agreement is found be-
we have taken the GaAs dielectric constant not to vary with tivween the two methods regarding the positions of the resonant
frequency (for simplicity the value at1000 nm is taken in our peak and the bandgap edges but there is a small discrepancy in
calculations) while this is not the case in the actual system. Thiige quality factor of the peak.
difference in the dielectric will slightly alter the position of the It is interesting therefore to see how the quality factor of
peaks [20]. This is consistent with the fact that the discrepangye resonant peak is affected by the finiteness of the size of
at the higher end of the reduced frequencies seems to be a litthe system and the width of the source, in our FDTD calcula-
larger for the smaller lattice constant (the corresponding wawtons. This can be seen in Fig. 4(a) and (b) where the quality
length differs more from the value of a 1000 nm). There are alggctor versus the lateral width of the sample,j and versus
some experimental peaks fer= 200 nm that are falling above the source width are shown, respectively. In Fig. 4(a), the ratio
the theoretical curves as, for example, the first-order peaks wighthe source width over the lateral extent of the structiye
L./a from ~0.60 to 0.85. We have not numerically calculategdefined in Fig. 1) is kept constant (equal to 0.5). It can be seen
the Qs for these, because they lie too close to the band edgest, as the lateral width approact2s:, () saturates at a value
and the determination of their quality factor can be vague anrdi70. In Fig. 4(b) we present results of #eversus the source
so we have not included them in Fig. 2. width for a system with a lateral width df,, = 40a. The width

We compare now the two computational methods (TMM and,, is large enough for the quality factor to have reached its sat-
FDTD) that are used to simulate the cavity structure. Thewgation value (which is related to the lateral size) so that one
are basically three fundamental differences between the tean see the dependence on the source width only. It is clearly
methods. The first one is that the transfer matrix technique iseen that for a small source width the quality factor drops sig-
time-independent method while for FDTD the fields are solvadficantly. From the data shown in Fig. 4(a) and (b), it can there-
in time domain. Also, in the TMM, the structure is infinite infore be argued that the finiteness of the source or the system’s
x by virtue of the periodic boundary conditions applied alonkateral size or both give 2-D characteristics in what would es-
this direction, while in the FDTD the systemis finite in they  sentially be a 1-D resonance for the infinite system and result in
plane bounded by the absorbing boundary conditions. Finalyreduced quality factor. By an infinite system, we mean an infi-
the incoming electromagnetic fields in the TMM framework araite lateral size and that the incoming waves have a plane wave
extended plane waves incident on the whele boundary (cor- front. In our system, when the lateral size is small the resonance
responding to a source infinite in width) while in the FDTDs supported by a smaller number of scatterers and is forced to
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Fig. 5. (a) Transmission calculated by the TMM versus reduced frequency

Fig.4. (a)Quality factoe) for a structure with awidtti . /b = 1. (2b = v/3a

is taken) calculated with the FDTD versils, (in units ofa) (see Fig. 1). The
source is chosen to have a length approximately half of the lateral length
the structure for alL ... (b) Quality factor@ calculated with the FDTD (solid
line with circles) with the saméd../b as in (a), versus the source width (in
units of a). L., is kept constant and equal #«a. In both (a) and (b), the
bold dotted line represents the value of the quality factor calculated with the

same method but with periodic (Bloch) boundary conditions along the lateral . . .
direction (i.e., perpendicularly to the propagation direction). The source usedi#e angle span of the source that increases with the decreasing

the calculations corresponding to that case is a pulse but with plane wave frggurce width. This would cause the peak to shift and broaden
The horizontal solid ine is the TMM result. (toward the higher frequencies). We have numerically checked
that the magnitude for the off-normal components of the in-
terminate at the edges. Also, when the system is large but gfming wave is relatively small. Also, we have not observed
source is small, the resonance occupies a smaller fraction of gignificant shift in frequency with decreasing source width in
cavity area and has a magnitude that decreases as one mgwe&DTD results. We have observed though that the height of
away from the center of the resonance. The resonance can débgytransmission peak decreases as the source width decreases.
in time not only along the propagation directignas the true It approaches the value of one as the source width approaches
1-D resonance does, but also along the lateral direction. In b#fi lateral size of the system (for the large system= 40a).
cases (small lateral width or small source), the result would Bébecomes one for the infinite system modeled either through
a smaller quality factor. Now, for the case when both the systéhe TMM or the FDTD with Bloch boundary conditions in the
and the source are very large, the resonance can be exter@tgfal direction of the crystal.
in the cavity region and be very close to the 1-D resonance. AsFig. 5(a) shows the transmission calculated with the TMM
seenin Fig. 4(b), for a source width equaft andL,, = 40a, method versus the reduced frequency o/ for a 1-D cavity
the quality factor isv174. That value is close te-180 which is  of width L./a = 0.985 and N, = 4, for different imaginary
the value of the quality factor as obtained from the FDTD thgarts in the air dielectric constant. Introducing imaginary parts
models the infinite system (Bloch boundary conditions) (dottetdith values of 0.02-0.05 in the air dielectric constant in the
horizontal line in Fig. 4). The solid horizontal lines in Fig. 4(@Qf MM system, has been suggested as a mechanism to model
and (b) give the quality factor for the infinite system as obsut of plane losses in [20]. This leads as well to a reduged
tained from the TMM. The respective value~£230. We have factor value V. is the number of rows of air cylinders in each
also looked at the dependence of the quality factor on the latesile of the 1-D dielectric cavity. As expected the transmission
width and kept the width of the source constant and equalto peak decreases with Imwhile the width of the transmission
What we found was that the quality factor increases as the latereases with Ine. We have also examined how the size of the
eral width increases, reaches a maximum value, then starts togkstem along the propagation direction affects the characteris-
crease and eventually saturates. This is the result of a combitied of the resonance. In Fig. 5(b), the dimesionless linewidth
effect. As described previously, when the lateral width is small/a—which is defined ag\ /a (whered A is the width in wave-
this causes the resonant peak to terminate at the edges. Adehgth of the resonance at the half maximum value)—is plotted
lateral width increases, the resonance occupies the maximuensusN, (the number of rows of cylinders on each side of
area it can—according to the specific source width. Increasitite dielectric cavity) on a semi-logarithmic scale. As mentioned
further the lateral width will not cause the resonance to occupyeviously, IV, is related to the thickness of the systdm,
more of the cavity along the lateral directignlt only allows it through the relatiod.., = 2V.0+ L. (L:n is shown in Fig. 1).
to decay in time along the direction as well and therefore the A linear relation on the semi-log scale betweAra with
quality factor starts to lessen.Another component that can cauéeis obtained, meaning that the quality facty which is in-
the quality factor to decrease with decreasing source widthvisrsely proportional ta\ /e, would increase exponentially with

u = a/ X for different values ofm ¢ of the air dielectricL./a = 0.985 on the
cgfvity resonance (falV. = 4). (b) Dimensionless linewidthX is A i.e., the
wavelength width that corresponds to transmission half of the peak’s maximum)
versusN,. (humber of rows in each side of the cavity) for the lossless case as
well as the cases with nonzero imaginary part in the air dielectric constant.
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Fig. 6. Transmission height of the resonance far/a = 0.985 for
three values of the imaginary part of the air dielectric consthnte. Two
experimental values for the cavity with., = 4 are shown for comparison.
The star and x correspondd¢o= 230 nm with L. /a = 1.07 anda = 220 nm
with L./a = 0.98, respectively.

reduced frequency (u=a/A)

Fig. 7. Quality factor calculated with the TMM versus the reduced frequency
for first-, second-, and third-order resonant peaks.

N.. That is consistent with the results for other defect cavitic 300 : ; . . 260 . . :
[13], [25]. In Sigalaset al. [13], where an air defect in a di- a) b

electric array is studied, it was shown that when absorption
introduced in the dielectric the quality factor saturates and dc 240 -
notincrease any further as the size of the systemincreases. &~ 2 [ . ’
saturation with the introduction of an imaginary part in the d
electric of the holes is observed in our case also, as can be s
in Fig. 5(b). We also observe (as in [13]) that the saturationval Q zg¢ | ]
of the linewidthA is smaller, the larger the imaginary part in the
dielectric.

In Fig. 6, we present the results achieved with the TMM ¢ g
the transmission height versué. for a 1-D cavity of width 150y ~. 180
L./a = 0.985 for three different values dfin e of the air di- ~.
electric. Notice that fofm ¢ = 0 the height is always one, i.e.,
perfect transmission. However, for a nonzero valuénof, the 100 s : x s 160 ' ' ' :
transmission height drops d¢. increases. Two experimental 000 002 004 006 008 0.10 0 002 0'041 ,,3'06 008 01
values are shown for almost the same widti.gf« as the one N
In th? CalCUIatlo.nS' Notice that this suggests thatlthe that Fig. 8. (a) Quality factor for three different cavity peaks with reduced
can fit the experimental data [20] can have a value close to 0.@dquenciest = 0.2255 (solid line), v = 0.2063 (dotted line), and

For the ideal case with no losses present, the quality factor= 0.2628 (dotted-dashed line) versuy N, where N is the number of
was calculated by the TMM for various cavity widls that 914 $pachGe hal he latice consiais chded o n e computaon,
led to peaks that span most of the bandgap. In Fig. 7, the/a = 0.985 andL./a = 1.2, respectively. The peak at= 0.2628 is of

quality factor is plotted versus the reduced frequency of tlterd O_rdelr (Witth/af=h 1.2). rThoflé_quality fact(%r) SQaturI_atefS at 0? é;%lue as the
erical accuracy of the method increases. uality factaEfgb = 1.
peak. (Peaks too close to the edges of the bandgap were Zial\ function of the grid accuracy calculated from the FDTD method with

used because the determination of th@irwould be vague Bioch boundary conditions across the lateral direction (solid line with squares)
as stated earlier in this paper). For every frequency in thed from the TMM (solid line with circles).

plot, there are three peaks that are characterized by different

orders and correspond to differeht values (see Fig. 2). So points. It was done for three different peaks. One close to the
three different curves are recovered when grouping the peddend gap center and the others close to the lower and higher
according to order. Higher order peaks are characterized bjrequency band edge respectively. It is seen from Fig. 8(a)
higher value of the quality factor. For every order, the qualitthat the quality factor increases with increasing accuracy and
factor is maximum for a frequency close to the center of treventually saturates at a value. The same holds for the quality
bandgap and reduces as the frequency approaches either éaigfer calculated from the FDTD method. This is shown in
of the bandgap. The calculations above were performed wkig. 8(b) for a cavity spacer valuec/b = 1. The FDTD data of

a grid lattice dividing the lattice constantinto ten intervals. Fig. 8(b) are obtained with Bloch boundary conditions applied
We have investigated the dependence of the quality factor withthe lateral £) direction. This way one has an infinite source
the accuracy of the TMM given by the numb&T of intervals with a plane wave front as in the TMM. The saturation values
the lattice constant is divided into, i.€V, is the number of grid of the @-factor for the TMM and FDTD are-230 and~250
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respectively. This difference might be due to the different way$12]
of calculating the transmission coefficient in the two methods
as was mentioned before in Section Ill.
[13]
IV. CONCLUSION

We have studied the properties of 1-D dielectric cavity struc{14]
ture in a 2-D hexagonal array with the transfer matrix method
and the finite difference time domain method. Both method$15]
agree in the position of the defect peak and both yield good
agreement (for the peak’s position) with the experiment [20] ag, ]
well. The quality factor though shows sensitivity to a lot of pa-
rameters such as the size of the system (both lateral and anELg]
the propagation direction), the type of the incoming electromag-
netic fields and losses out of the plane of periodicity. In that
context the two numerical methods (FDTD and TMM) were

compared. e

ACKNOWLEDGMENT [19]

The authors would like to thank M. Agio for providing the 20]
FDTD code and helpful discussions. They would also like to
acknowledge H. Benisty, M. Rattier, and M. Sigalas for helpful
discussions. 21]

REFERENCES [22]

[1] J. D. Joannopoulos, R. D. Meade, and J. N. WiRhptonic Crystals:

Molding the Flow of Light Princeton, NJ: Princeton Univ. Press, 1995. [23]

[2] C. M. Soukoulis, Ed.Photonic Band Gap Materials Dordrecht, The

Netherlands: Kluwer, 1996. [24]

[3] ——, Photonic Crystals an Light Localization in the 21st Cen-
tury. Dordrecht, The Netherlands: Kluwer, 2001.

[4] P.R.Villeneuve and M. Piche, “Photonic bandgaps in periodic dielectric[25]
structures,’Prog. Quantum Electronvol. 18, pp. 153-198, 1994.

[5] J. D. Joannopoulos?hotonic Band Gap MateriaJsC. M. Soukoulis,
Ed., 1996, vol. 315, NATO ASI SERIES E, pp. 1-21.

[6] R. K. Lee, O. Painter, B. Kitzke, A. Scherer, and A. Yariv, “Emission

properties of a defect cavity in a two-dimensional photonic band gap

crystal slab,”J. Opt. Soc. Amervol. B 17, pp. 629-633, 2000.

(71

849

J.-K. Hwang, S.-B. Hyun, H.-Y. Ryu, and Y.-H. Lee, “Resonant modes
of two-dimensional photonic bandgap cavities determined by the finite-
element method and by use of the anisotropic perfectly matched layer
boundary condition,J. Opt. Soc. Amer. Rol. 15, pp. 2316-2324, 1998.

M. M. Sigalas, K. M. Ho, R. Biswas, and C. M. Soukoulis, “Theoretical
investigation of defects in photonic crystals in the presence of dielectric
losses,Phys. Rev. Bvol. 57, pp. 3815-3820, 1998.

H. Hirayama, T. Hamano, and Y. Aoyagi, “Novel surface emitting laser
diode using photonic band-gap crystal cavigpl. Phys. Lettvol. 69,

pp. 791-793, 1996.

B. Temelkuran, E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho,
“Resonant cavity enhanced detectors embedded in photonic crystals,”
Appl. Phys. Lett.vol. 72, pp. 2376-2378, 1998.

B. Temelkuran, M. Bayidir, E. Ozbay, R. Biswas, M. M. Sigalas, G.
Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a
very high directivity,”J. Appl. Phys.vol. 87, pp. 603-605, 2000.

I. Schnitzer, E. Yablonovitch, A. Scherer, and T. J. Gmitter, “The
single-mode light-emitting-diode,” iPhotonic Band Gaps and Local-
ization, C. M. Soukoulis, Ed., 1993, vol. 308, NATO ASI SERIES B,
pp. 369-378.

D. F. Sievenpiper, C. F. Lam, and E. Yablonovitch, “Two-dimensional
photonic-crystal vertical-cavity array for nonlinear optical image pro-
cessing,”Appl. Opt, vol. 37, pp. 2074—2078, 1998.

M. Agio, E. Lidorikis, and C. M. Soukoulis, “Impurity modes in a two-
dimensional photonic crystal: Coupling efficiency agdactor,”J. Opt.

Soc. Amer. Bvol. 17, pp. 2037-2042, 2000.

M. Rattier, H. Benisty, C. J. Smith, A. Beraud, D. Cassagne, C. Jouanin,
T. F. Krauss, and C. Weisbuch, “Perfomance of waveguide-based
two-dimensional photonic-crystal mirrors studied with Fabry—Perot
resonators,1EEE J. Quantum Electronvol. 37, pp. 237-243, 2001.

J. B. Pendry, “Photonic band structures,”Mod. Opt, vol. 41, pp.
209-229, 1994.

J. B. Pendry and P. M. Bell, “Transfer Matrix Techniques for Electro-
magnetic Waves,” ilPhotonic Band Gap Materia)<C. M. Soukoulis,
Ed., 1996, vol. 315, NATO ASI SERIES E, pp. 203—-228.

A. Taflove, Computational Electrodynamics—The Finite Difference
Time-Domain Methad Norwell, MA: Artech House, 1995.

Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting
boundary for transient wave analysisStientia Sinicaser. A, vol.
XXVII, pp. 1063-1076, 1984.

P. R. Villeneuve, S. Fan, J. D. Joannopoulos, K.-Y. Lim, J. C. Chen, G.
S. Petrich, L. A. Kolodziejski, and R. Reif, “Microcavities in channel
waveguides,” inPhotonic Band Gap MateriaJsC. M. Soukoulis, Ed.,
1996, vol. 315, NATO ASI SERIES E, pp. 411-426.

N. M. Lawandy and G.-i. Kweon, “Molecular and free electron sponteStavroula Foteinopouloureceived the B.S. degree in physics from University

neous emission in periodic three dimensional dielectric structures,” af Patras, Patras, Greece, in 1995 and the M.S. degree in physics from Rensse-
Photonic Band Gaps and Localizatio@. M. Soukoulis, Ed., 1993, vol. laer Polytechnic Institute, Troy, NY, in 1997. She is currently working toward

B 308, NATO ASI SERIES, pp. 355-368.
(8l
guantum well and quantum box structures: A higtresonant cavity,”
Appl. Phys. Lett.vol. 68, pp. 3233-3235, 1996.
E. Yablonovitch, “Photonic crystals). Mod. Opt, vol. 41, pp. 173-194,
1994.

[9]
(10]

the Ph.D. degree in condensed matter physics at lowa State University, Ames.
S.-Y.Lin, V. M. Hietala, S. K. Lyo, and A. Zaslavsky, “Photonic band gap Her research interests are photonic band-gap material structures and left
handed materials.

C. J. M. Smith, T. F. Krauss, H. Benisty, M. Rattier, C. WeisbuchCostas M. Soukoulisreceived the B.S. degree from the University of Athens,

U. Oesterle, and R. Houdre, “Directionally dependent confineme@reece, in 1974, and the M.S. degree and the Ph.D. degree in physics from the
in photonic-crystal microcavities,J. Opt. Soc. Amer. Bvol. 17, pp. University of Virginia from 1978 to 1981.

2043-2051, 2000. He was a Research Physicist at Exxon Research and Engineering Company
C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, Cfrom 1981 to 1984. He has been a faculty member of the Physics Department at
Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, “Coupled guide almva State University, Ames, since 1984. His current research interests include
cavity in two-dimensional photonic crystal®ppl. Phys. Letf.vol. 78, theory of disordered system, light localization, photonic crystals, random lasers,
pp. 1487-1489, 2001. and left-handed materials.

[11]



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


